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The virtual seismometer method (VSM) is the converse of 
ambient noise correlation (ANC)  

VSM 
 

"virtual seismometer" 
 

CC = M1 M2 GF12 

ANC 
 

"virtual earthquake" 
 

CC = GFAB 

Both methods:     Ncorrelations = N*(N-1)/2  
reference: Curtis et al. 2009 
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Time after event origin (seconds)

E1004: 2012/10/31 17:31:25  (2716 m deep)

E1170: 2012/12/21 22:20:42 (1280 m deep)

5 second window

5 second window

Microquakes recorded by Newberry network

How to turn a microquake into a virtual seismometer 

•  Obtain the data for 2 earthquakes recorded by a single station 
•  At Newberry, we isolated 5 second long windows within the coda of each microquake.  
•  Correlate the coda traces. 
•  Repeat for all stations in the network. 

1441

-5 0 5

Correlation Time (seconds)

result of correlation between E1004*E1170 

recorded by  NN24.DHZCorrelation of 2 microquakes separated by 1440 meters 
recorded by NN24 



Virtual seismograms compare well against records at the Salton Sea
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Above: SSIP data recorded at broadband station RXH(red) are 
compared to virtual seismograms created using the correlation 
of the SSIP sources (blue). All traces were filtered between 4-5 Hz.
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Virtual seismograms in the local field 
(distance between quakes ~ distance to recording network)  
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Moving into the near field: Applying VSM to microseismic records 
(distance between quakes > distance to recording network)  

•  Thousands of microseismic 
events occur beneath the 
Salton Sea geothermal fields. 

•  This cloud of microseismicity 
effectively illuminates the 
subsurface. 

•  Millions of potential 
interferometric 
measurements.  

Hauksson catalog of events 2008-2011  

Ncorrelations = N*(N-1)/2  
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Focusing on the a well distributed collection of high quality events 
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183 template events within the microseismic cloud (Wang et al., 2015)	  	  



−115.7

−115.65

−115.6

−115.55

−115.5

33.133.1233.1433.1633.1833.233.2233.2433.26

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

latitude
longitude

de
pt

h 
(m

)

VSM is sensitive to the geometry of the system 
  

Coda interferometry can be done 
between all events in the system. 
 
When the events fall along a line 
pointing to the recording station: 
  
VSM = estimate of the Green function 
(GF) between earthquakes. 

Example of the ideal geometry for obtaining virtual seismograms	  	  

183 template events: 
> 16,000 correlations 
~ 1500 virtual seismograms 
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Virtual Seismograms
Salton Sea Geothermal Field

Example of virtual seismograms at the Salton Sea 

183 template events within the microseismic cloud (Wang et al., 2015)	  	  
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Moving into the very near field 
(when the quakes fall within the same uncertainty ellipse)  

Pushing the limits on 
resolution and magnitude. 
 
At this range:  
Lose constraints on the 
geometry. 



•  MFP identifies signals that 
match the template event 
across all stations, channels 
and frequency bands. 

•  The template shown 
detected 77 additional 
events, many of which were 
buried in the background 
noise. 

•  We expect these to be 
spatially close to the 
template event. 

Moving into the very near field 
(when the quakes fall within the same uncertainty ellipse)  

Matched Field Processing in the Salton Sea geothermal field (Wang et al., 2015). 
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A template event can be used  
to detect smaller events nearby 
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The symmetry and structure of the correlation allow us to sort the 
events in space. 
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A pair of closely spaced events in  
the MFP population. 

 
•  Correlation of closely 

spaced events will appear 
similar to an 
autocorrelation. 

•  Correlation of events 
separated in space will be 
assymetric and include 
multiple peaks. 

•  Detected events often 
correlate better with one 
another than with the 
original template event. 



Subclusters emerge from the MFP population. 

We are able to identify and separate multiple 
subclusters  within the MFP detection group and to 
synchronize their origin times by observing time shifts. 
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The subclusters can be sorted relative 
to one another and to the template 
event. 



VSM collapses the computational scale of the problem:  
often by several orders of magnitude 

This allows fast, full waveform inversion of source focal mechanism, structure and wave 
propagation. 



True MT

Inversion based
on VSM

0 5 10 15 20 25

0 5 10 15 20 25

Z

0 5 10 15 20 25

0 5 10 15 20 25

Z

NN24  0.34
1.24

NM22  0.42
180.00

NB04  0.72
350.13

NM06  0.86
124.81

NN18  1.10
30.03

NB18  1.11
27.95

NB19  1.18
170.70

NN19  1.20
172.27

NB17  1.59
232.84

NN21  1.61
73.19

NN17  1.75
238.54

NN09  1.96
283.69

NM41  2.49
144.99

NM40  2.64
116.68

NM03  2.65
11.78

NB01  2.81
333.61

NN07  2.81
332.50

NM08  3.17
171.11

NN32  3.17
208.12

NB08  3.18
171.21

NB13  3.34
253.57

NM42  3.39
45.00 

0 5 10 15 20 25

0 5 10 15 20 25

Z

0 5 10 15 20 25

0 5 10 15 20 25

X

0 5 10 15 20 25

0 5 10 15 20 25

X

0 5 10 15 20 25

0 5 10 15 20 25

Y

0 5 10 15 20 25

0 5 10 15 20 25

Y

We can recover the focal mechanisms 
directly by inverting the VSM waveforms 
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Virtual seismometers allow us to focus directly on this zone of seismicity in tectonically active 
regions.  
 
Here we are adapting it to regions of microseismicity with the hope of illuminating the subsurface 
precisely where the pressures are changing. VSM has the potential to image the evolution of 
seismicity over time, including changes in the style of faulting. Given sufficient microseismicity we 
can begin to calculate detailed evolution of the wavefield. 

Conclusions 
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Moving into the near field: Applying VSM to microseismic records 

(distance between quakes > distance to recording network)  

Map of the Newberry experiment network 
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Example of a microquake as a virtual seismometer 

E1004 (yellow) as the reference virtual seismometer 
recording events along a line pointing towards NN24 

Correlation waveforms: green line 
marks 2500 m/s 
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We can begin tracking the waveform propagation through the subsurface 

Estimate of the propagation of the seismic waveform from 
E1004 through the subsurface. 
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VSM signal is very sensitive to the relative location of the sources 

Arrival time measurement: 
Two sources offset vertically create a distinctive 
bullseye pattern when recorded at the surface. 

Understanding the relative offsets between events allows us to make measurements  
on the VSM correlations, even when the geometry isn't perfectly in line with the network stations. 
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Synthetic case: 
Two isotropic sources offset vertically by 50 meters 
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2 sources laterally offset create a simple 
linear pattern. 

Understanding the relative offsets between events allows us to make measurements  
on the VSM correlations, even when the geometry isn't perfectly in line with the network stations. 

VSM signal is very sensitive to the relative location of the sources 

Synthetic case: 
Two sources offset laterally by 50 meters 
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Changes in the focal mechanisms can be measured using 
amplitude of the VSM signal 
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Synthetic case: 
Two sources offset laterally by 50 meters 
Yellow: isotropic 
Blue: DC 
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Virtual seismograms in the far field 
(distance between quakes << distance to recording network)  

In blue, is the 5.3 Mw, 2002/5/15 earthquake at (43.27, -127.22) .  In red is the 6.2 Mw  2003/01/16 earthquake at (44.07 -129.36).  
189 km distance between earthquakes.

How to turn an earthquake into a virtual seismometer.



How to turn an earthquake into a virtual seismometer.

230˚

230˚

235˚

235˚

240˚

240˚

245˚

245˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

single station correlation(SLA)

CI network correlation stack

189 km distance between earthquakes.
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Virtual seismograms in the far field 
(distance between quakes << distance to recording network)  



The resulting waveforms closely match those predicted by large-scale global models.
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synthetic seismograms calculated using SPECFEM3D_G
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Correlation waveforms vary by azimuth. 

Azimuthal corrections are required to obtain the correct waveforms.
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synthetic seismograms calculated using SPECFEM3D_G
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Correlation waveforms vary by azimuth with the added complication of source mechanism. 

Azimuthal corrections are required to obtain the correct waveforms.
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Fig. 1. Location map
of the broadband sta-
tions CUIG, YAIG, and
PLIG of the Mexican
National Seismologi-
cal Network (black
squares) and epicen-
ters of 30 earthquakes
of the data set (white
circles). Inset: An ex-
ample of a record of
one of these events at
station PLIG (vertical
component).

www.sciencemag.org SCIENCE VOL 299 24 JANUARY 2003
Michel Campillo* and Anne Paul
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Campillo and Paul (2003) used the cross correlation of the diffuse coda recorded at different 
seismic stations to obtain the Green's function of the Earth between them. 
 
It is straightforward to flip the geometry used by Campillo and Paul and focus instead on 
the structure between pairs of earthquakes. 

Our method, similar to that of Curtis et al. (2009), involves correlating the coda of pairs of 
events recorded at individual stations and then stacking the results over all stations to 
obtain the final waveform.


